Aller au contenu Aller au menu principal Aller à la recherche

soutenanance de thèse (22/11/2013)

Joseph Boyard-Micheau soutient sa thèse intitulée

"Prévisibilité potentielle des variables climatiques à impact agricole en Afrique de l'Est et application au sorgho dans la région de Mont Kenya"

pour l'obtention du grade  de docteur de l'Université de Bourgogne, discipline Géographie (Climatologie) devant le jury composé de
- Pr G Beltrando (U Paris 7) rapporteur
- Dr B Sultan (CR IRD, Paris) rapporteur
- Dr C Baron (CR CIRAD, Montpellier) examinateur
- Pr A Durand (U Rouen) examinateur
- Pr v Moron (U Aix-Marseille I) examinateur
- Dr N Philippon (CR CNRS, Dijon) examinateur
- Pr P Camberlin (Dijon) directeur de thèse

14h00, amphithéâtre Courtois (2ème étage, aile sud ) , faculté des Sciences Gabriel, Dijon

Dans les pays du Sud ruraux et à faibles revenus, la vulnérabilité des zones agricoles pluviales, face à la variabilité pluviométrique, nécessite de trouver des solutions efficaces pour limiter les effets des aléas climatiques sur les récoltes. La prévision des caractéristiques des saisons des pluies quelque temps avant leur démarrage devrait aider à l’établissement de stratégies agricoles d’adaptation aux aléas pluviométriques. C’est à cet objectif que s’attache ce travail, appliqué à l’Afrique de l’Est (Kenya et nord de la Tanzanie), et articulé en 3 parties :

- Définir et comprendre le comportement des descripteurs intra saisonniers (DIS) qui feront l’objet de l’étude de prévisibilité. Un travail spécifique a permis le développement d’une nouvelle approche méthodologique dans la manière de définir les démarrages (DSP) et fins (FSP) de saisons des pluies à l’échelle régionale. Cette approche basée sur une analyse multivariée, permet de s’affranchir des choix subjectifs de seuils pluviométriques imposés par les définitions communément utilisée en agro-climatologie. Une analyse de cohérence spatiale à l’échelle inter annuelle montre que, pour les deux saisons des pluies (long rain set « short rains »), le cumul saisonnier et le nombre de jours de pluie présentent une forte cohérence spatiale, tandis qu’elle est plus modérée pour le démarrage et fin des saisons et faible pour l’intensité quotidienne moyenne.

- Analyser la prévisibilité des DIS aux 2 échelles spatiales régionale et locale en s’appuyant sur les simulations numériques du modèle climatique global ECHAM 4.5. Les précipitations quotidiennes simulées par le modèle, même après correction des biais, ne permettent pas d’appréhender correctement la variabilité interannuelle des DIS. Une spécification de la variabilité des DSP et FSP menée par le biais de modèles statistiques construits à partir d’indices climatiques observés, présuppose une prévisibilité modérée des deux descripteurs à l’échelle locale (régionale), et cela quelle que soit la saison. Le développement de modèles statistico-dynamiques à partir des champs de vents simulés par ECHAM 4.5, en mode forcé par les températures marines observées d’une part et prévues d’autre part, montre également des performances faibles localement et régionalement.

- Explorer la manière dont la variabilité spatio-temporelle des paramètres climatiques et environnementaux module la variabilité des rendements de sorgho. Ces rendements sont simulés par le modèle agronomique SARRA-H à partir de données climatiques observées (1973-2001) dans 3 stations localisées à différentes altitudes le long des pentes orientales du Mt Kenya. Le cumul précipité et la durée de la saison expliquent une part importante de la variabilité des rendements. D’autres variables apparaissent comme jouant un rôle non négligeable ; le nombre de jours de pluies, l’intensité quotidienne moyenne ou encore certains DIS relatifs à l’organisation temporelle des pluies au sein d’une saison en font partie. L’influence des autres variables météorologiques est seulement visible pour les ‘long rains’ avec une covariation négative entre les rendements et les températures maximales ou, le rayonnement global. La date de semis semble jouer un rôle dans la modulation des rendements pour les stations de haute et moyenne altitudes, mais avec des différences notables entre les deux saisons des pluies.

Présentation rapide

Le Centre de Recherches de Climatologie (CRC) est une équipe de recherche de l'UMR6282 Biogéosciences (CNRS / Université de Bourgogne). Le CRC travaille sur la détection, l'attribution et la prévision du signal climatique et de ses impacts dans l'actuel et le futur. Ses activités sont centrées autour de la régionalisation du climat observé et simulé.

Le CRC est structuré en deux axes thématiques qui mettent en œuvre des méthodes permettant de passer de l'information large échelle (objet des travaux de l'équipe « Dynamique du Climat ») à une information d'échelle plus fine permettant d'évaluer les impacts (équipe « Impacts Climatiques »). Cette méthodologie relève de la statistique (méthodes statistico-dynamiques sur les sorties de modèles; statistiques spatiales;  désagrégation), de l'analyse spatiale (SIG opérateurs d'analyse spatiale vecteur et raster; interpolation spatiale mécaniste ou statistique), ou de la modélisation numérique du climat (modèles régionaux MM5 et WRF, modèle global Arpege-Climat).

Appli Clim

L'Appli Clim du CRC

Analysez l’évolution climatique des 50 dernières années !

APPLI_CRC_small


bandeau-labo4
cnrs
Université de Bourgogne