Aller au contenu Aller au menu principal Aller à la recherche

L'article du mois (août 2012)

Multi-month memory effects on early summer vegetative activity in semi-arid South Africa and their spatial heterogeneity

par Yves Richard, Nadège Martiny, Mathieu Rouault, Nathalie Philippon, Yann Tracol & Thierry Castel
publié dans la revue International Journal of Remote Sensing
In semi-arid African regions (annual rainfall between 200 and 600 mm), variability of vegetative activity is mainly due to the rainfall of the current rainy season. In most of South Africa, the rainy season occurs from October to March. On average, vegetative activity lags rainfall by 1 to 2 months. The interannual variability in early summer (December to September) normalized difference vegetation index (NDVI) depends primarily on precipitation at the beginning (October to November) of the rainy season. However, once this primary control is removed, the residual interannual variability in NDVI highlights a double memory effect: a 1-year effect, referred to as Mem1, and a 7- to 10-month effect, referred to as Mem2. This article aims at better describing the influence of soil and vegetation characteristics on these two memory effects. The data sets used in this study are as follows: (1) a 19-year NDVI time series from National Oceanic and Atmospheric Administration (NOAA) satellites, (2) rainfall records from a network of 1160 rain-gauge stations compiled by the Water Research Commission (WRC), (3) vegetation types from Global Land Cover (GLC) 2000 and (4) soil characteristics from the soil and terrain database for Southern Africa (SOTERSAF). Results indicate that among 20–30% of NDVI variance that is not explained by the concurrent rainfall, one-third is explained by the two memory effects. Mem1 is found to have maximum effect in the northwest of our study domain, near the Botswana boundary, in the South Kalahari. Associated conditions are open grasslands growing on Arenosols. Mem1 is less important in the southeast, particularly in open grassland with shrubs growing on Cambisols. Thus, Mem1 mainly depends on soil texture. Mem2 is more widespread and its influence is the greatest in the centre, the south and the east of our domain. It is related to rainfall from January to April, which controls, beyond the intervening dry season, the interannual variations of NDVI (December to September) at the beginning of the next rainy season. Through these new findings, this article emphasizes again the high potential of remote-sensing techniques to monitor and understand the dynamics of semi-arid environments.
Yves Richard, Nadège Martiny, Mathieu Rouault, Nathalie Philippon, Yann Tracol & Thierry Castel (2012): Multi-month memory effects on early summer vegetative activity in semiarid South Africa and their spatial heterogeneity, International Journal of Remote Sensing, 33:21, 6763-6782. DOI:10.1080/01431161.2012.692830

Présentation rapide

Le Centre de Recherches de Climatologie (CRC) est une équipe de recherche de l'UMR6282 Biogéosciences (CNRS / Université de Bourgogne). Le CRC travaille sur la détection, l'attribution et la prévision du signal climatique et de ses impacts dans l'actuel et le futur. Ses activités sont centrées autour de la régionalisation du climat observé et simulé.

Le CRC est structuré en deux axes thématiques qui mettent en œuvre des méthodes permettant de passer de l'information large échelle (objet des travaux de l'équipe « Dynamique du Climat ») à une information d'échelle plus fine permettant d'évaluer les impacts (équipe « Impacts Climatiques »). Cette méthodologie relève de la statistique (méthodes statistico-dynamiques sur les sorties de modèles; statistiques spatiales;  désagrégation), de l'analyse spatiale (SIG opérateurs d'analyse spatiale vecteur et raster; interpolation spatiale mécaniste ou statistique), ou de la modélisation numérique du climat (modèles régionaux MM5 et WRF, modèle global Arpege-Climat).

Appli Clim

L'Appli Clim du CRC

Analysez l’évolution climatique des 50 dernières années !

APPLI_CRC_small


bandeau-labo4
cnrs
Université de Bourgogne